Saturday, May 23, 2020
American Dream How To Pursuit This Dream - 958 Words
The Pursuit of the American Dream What is the American Dream and how does one obtain it? That question can be answered in a multitude of ways. For some achieving the American Dream means living a better, richer and happier life. Others believe it has more emphasis on just living simply and having a fulfilling life; also having the opportunity to become anything one desires with little determination and hard work. In Watsonââ¬â¢s Bread and Roses: Mills, Migrants, and the Struggle for the American Dream, immigrants, who came to Lawrence in hopes of obtaining a better life, stood up for their rights and fought for a better life. The immigrantââ¬â¢s path to the American Dream was a search for opportunity and dignity. When man is forced to live inâ⬠¦show more contentâ⬠¦Oââ¬â¢Sullivan reported the strike committee ââ¬Å"developed leadership among the workers of the most surprising caliber and personality.â⬠The committee established a relief system that assured no one starved during the strike. Child ren of the strikers were sent to live with sympathetic families in other cities so that the strikers would not be forced back into the factories because of hungry children, a tactic used successfully in Europe. On February 24th, a group of mothers accompanied their children to the railroad station. One group of women carried a banner proclaiming, We want bread and roses too. Roses signified the respect due to them as women, rather than just as cheap labor. The slogan caught on and provided the refrain for a popular new songââ¬âand the name of one of the most important events in American labor history. Police brutally clubbed the women and their children and threw them into patrol wagons. The ugly scene of February 24th was reported across the nation. Here itââ¬â¢s seen the Watsonââ¬â¢s sympathies lie with the immigrants. And the immigrants have shown that they have the power to determine how this strike will play out. In mid-March, after nine weeks, ââ¬Å"an agreement wa s finally reachedâ⬠(Watson 206), between the workers and owners and the strike ends in their favor. The 1912 labor strike in Lawrence was the first time such large numbers of unskilled andShow MoreRelated The Great Gatsby - The American Dream Essay767 Words à |à 4 Pagesis the character of the American Dream in which, in their respective ways, his principle heroes are all trapped.â⬠, can be justified through Scott Fitzgeraldââ¬â¢s novel The Great Gatsby and his short story ââ¬Å"Winter Dreamsâ⬠. In both pieces of literature, Fitzgerald explores and comments upon Americans and their pursuit of the American Dream through Jay Gatsby and Dexter Greenââ¬â¢s pursuit of their ââ¬Å"golden girlsâ⬠. nbsp;nbsp;nbsp;nbsp;nbsp;Fitzgerald shows that the American Dream is not easily achievedRead MoreThe Great Gatsby By F. Scott Fitzgerald1707 Words à |à 7 PagesStates, the pursuit of wealth through hard work is the main principle and guideline of life. Labeled as the American Dream, Americans are pressed to work hard and honest under the idea that they will have an equal opportunity to obtain riches and glory. But is the pursuit of wealth really as pure and honest as it may seem? Holding this same idea and question, in F. Scott Fitzgeraldââ¬â¢s novel The Great Gatsby, a young man by the name of Nick Carraway begins his pursuit towards the American Dream. The novelRead MoreThemes Of The American Dream In The Great Gatsby1503 Words à |à 7 PagesThe American dream is the ideal that every human that lives in the United States of America has an equal opportunity to fulfill success and achieve happiness. The failure of the American dream is an evident theme in the novel. The autho r, F. Scott Fitzgerald, uses the character Jay Gatsby to symbolize the corruption that the pursuit of the American Dream holds. The American Dream highlights equality and is the quintessential idea that all humans are equal. However, this idea is perceived as an illusionRead MoreAmerican Dream in the Film, The Pursuit of Happyness Essay1267 Words à |à 6 Pages The American dream is not fully represented in the same way as the ideas were initially raised. The ideas were primarily fabricated in the very beginning of our country. The propagandist role of any medium has changed just as much as the times have since the signing of the Declaration of Independence. In contemporary America, film is the leading component of the propagation and detraction of the American dream. The film The Pursuit of Happyness (2005) supports the idea of the American dreamRead MoreThe Theme Of The American Dream In The Great Gatsby1297 Words à |à 6 PagesIn the definition of the American Dream by Ja mes Truslow Adams in 1931, life should be better and richer and fuller for everyone, with opportunity for each according to ability or achievement regardless of social class or circumstances of birth. If you have a dream in America, you can achieve it with old fashioned hard work. Whether itââ¬â¢s going from rags to riches or finding love, the American Dream can offer it. But the ever-popular American dream is easily corrupted. This is greatly shown in theRead MoreThe American Dream By Jim Cullen1265 Words à |à 6 PagesInterpreted in multiple ways and forms, a quintessential aspiration has been the blueprint for Americans when engaging in perfection in politics, economics, and society. This ââ¬Å"American Dreamâ⬠, depicted by Jim Cullen, is a Puritan-inspired strive for opportunity presenting itself as an universal standard that constitutes to ultimate success. The reality of this Dream is a flawed repetition of a continuous pursuit of happiness, where one bleeds and sac rifices to be ââ¬Å"happyâ⬠, and the constant modificationRead MoreOf Mice and Men and American Beauty Essay1435 Words à |à 6 Pagesinsights into the American Dream are offered through the novella Of Mice and Men and the film American Beauty? In your essay you must consider the influences of context and the importance of techniques in shaping meaning. Of Mice and Men, a 1937 novella by John Steinbeck and American Beauty, a 1999 film directed by Sam Mendes, offer various insights into the American Dream and are both contextually driven. Both texts present the possibility of different pursuits of the American Dream and portray aRead MoreThe American Dream : F. Scott Fitzgerald s The Great Gatsby1329 Words à |à 6 PagesAn American Illusion After the Chinese Exclusion Act of 1882 was implemented in America, many immigrants from China, Japan, and India were stripped of their pursuit of the American Dream at Angel Island. The immigration stationââ¬â¢s detainment of these rejected dreamers destroyed stories before they could happen. These stories of opportunity and the fulfillment of the American Dream make America what it is today. For instance, many immigrants today who are lucky enough to settle into America enterRead MoreMartin Luther King s I Have A Dream Speech891 Words à |à 4 PagesSince Kindergarten, teachers have been teaching students about Martin Luther King Juniorââ¬â¢s ââ¬Å"I Have a Dreamâ⬠speech. Ever since children have been born, they have celebrated Independence Day by either going to a parade, or shooting fireworks. Although, at these young ages, children donââ¬â¢t quite know the real importance of each of them. Martin Luther King Jr. wanted every human being, regardless of their race to be treated fairly or just. Independence Day was the day on July 4, 1776 where fifty-sixRead More6. The Value/Danger Of Wealth. These Few Words By John1254 Words à |à 6 Pagessuccess of a person, but the pursuit of opulence twisted foundation of the American dream by resulting in greediness. Money enticed people into accomplishing a directive due to its great worth, which could potentially result in good consequences or bad consequences. Wealth can bring about high values and through those high values it could pose the threat of false happiness and popularity, the motivations behind the pursuit of wealth, and the brokenness of the American dream. Happiness and popularity
Monday, May 11, 2020
Ziek Sanchez. Massie And Perry . Pd. 3. April 12, 2017.
Ziek Sanchez Massie and Perry Pd. 3 April 12, 2017 Post Traumatic Stress Disorder From The Vietnam War The Vietnam war was one of the most alarming and dangerous wars to fight. Every step in the Vietnam jungle was taken cautiously. The guerrilla warfare used by the Vietcong was frightening to anticipate. The majority of the United States army was only that of young men who had been chosen through the draft. Young men going to school and living a life at home in safety all the sudden having to make an overwhelming transition into a deadly, violent and nearly hopeless battlefield. This was only the beginning of problems for the future vietnam survivors. The violence of the Vietnam War brought upon the recognition of Post Traumatic Stressâ⬠¦show more contentâ⬠¦When the body does not calm down sometime after the situation it experiences PTSD. Soon after, suffering from nightmares, lack of sleep and flashbacks become common side effects of the disorder. The Vietnam War was one of the most intense, stressful and exhilarating wars to fight due to the factors of fear and not knowing t he surrounding environment. Vietnamââ¬â¢s land is a jungle filled with natural dangers. Monsoons were common on the Vietnam land, which made harsh wet and hot fighting conditions. Animals such as snakes and scorpions made it dangerous to wander blindly in the jungle. On top of all the natural dangers and conditions of the land, the communist enemy known as the Vietcong were known for their use of booby traps such as bear traps, wooden stakes applied to dangerous designs, and use of poison. American soldiers found these factors made it hard to fight a war and found it even harder to fight when the U.S Army couldnââ¬â¢t discriminate the enemy from civilians. The Vietcong and South Vietnamese were the same people with different views, so this made war hard to fight when it is nearly impossible to identify the enemy. The use of guerrilla warfare made it difficult to beat the enemy in a foreign jungle terrain. The Vietcong having the upper hand in almost every aspect of the war mad e warfare conditions very stressful for American soldiers. Most of the American soldiers were already experiencing anxiety and stress due
Wednesday, May 6, 2020
Fuzzy Logic Free Essays
Overview The reasoning in fuzzy logic is similar to human reasoning. It allows for approximate values and inferences as well as incomplete or ambiguous data (fuzzy data) as opposed to only relying on crisp data (binary yes/no choices). Fuzzy logic is able to process incomplete data and provide approximate solutions to problems other methods find difficult to solve. We will write a custom essay sample on Fuzzy Logic or any similar topic only for you Order Now Terminology used in fuzzy logic not used in other methods are: very high, increasing, somewhat decreased, reasonable and very low. [4] [edit]Degrees of truth Fuzzy logic and probabilistic logic are mathematically similar ââ¬â both have truth values ranging between 0 and 1 ââ¬â but conceptually distinct, due to different interpretationsââ¬âsee interpretations of probability theory. Fuzzy logic corresponds to ââ¬Å"degrees of truthâ⬠, while probabilistic logic corresponds to ââ¬Å"probability, likelihoodâ⬠; as these differ, fuzzy logic and probabilistic logic yield different models of the same real-world situations. Both degrees of truth and probabilities range between 0 and 1 and hence may seem similar at first. For example, let a 100 ml glass contain 30 ml of water. Then we may consider two concepts: Empty and Full. The meaning of each of them can be represented by a certain fuzzy set. Then one might define the glass as being 0. 7 empty and 0. 3 full. Note that the concept of emptiness would be subjective and thus would depend on the observer or designer. Another designer might equally well design a set membership function where the glass would be considered full for all values down to 50 ml. It is essential to realize that fuzzy logic uses truth degrees as a mathematical model of the vagueness phenomenon while probability is a mathematical model of ignorance. edit]Applying truth values A basic application might characterize subranges of a continuous variable. For instance, a temperature measurement for anti-lock brakes might have several separate membership functions defining particular temperature ranges needed to control the brakes properly. Each function maps the same temperature value to a truth value in the 0 to 1 range. These truth values can then be used to determine how the brakes should be controlled. Fuzzy logic temperature In this image, the meaning of the expressions cold, warm, and hot is represented by functions mapping a temperature scale. A point on that scale has three ââ¬Å"truth valuesâ⬠ââ¬âone for each of the three functions. The vertical line in the image represents a particular temperature that the three arrows (truth values) gauge. Since the red arrow points to zero, this temperature may be interpreted as ââ¬Å"not hotâ⬠. The orange arrow (pointing at 0. 2) may describe it as ââ¬Å"slightly warmâ⬠and the blue arrow (pointing at 0. 8) ââ¬Å"fairly coldâ⬠. [edit]Linguistic variables While variables in mathematics usually take numerical values, in fuzzy logic applications, the non-numeric linguistic variables are often used to facilitate the expression of rules and facts. 5] A linguistic variable such as age may have a value such as young or its antonym old. However, the great utility of linguistic variables is that they can be modified via linguistic hedges applied to primary terms. The linguistic hedges can be associated with certain functions. [edit]Example Fuzzy set theory defines fuzzy operators on fuzzy sets. The problem in applying this is that the appropriate fuzzy operator may not be known. For this reason, fuzzy logic usually uses IF-THEN rules, or constructs that are equivalent, such as fuzzy associative matrices. Rules are usually expressed in the form: IF variable IS property THEN action For example, a simple temperature regulator that uses a fan might look like this: IF temperature IS very cold THEN stop fan IF temperature IS cold THEN turn down fan IF temperature IS normal THEN maintain level IF temperature IS hot THEN speed up fan There is no ââ¬Å"ELSEâ⬠ââ¬â all of the rules are evaluated, because the temperature might be ââ¬Å"coldâ⬠and ââ¬Å"normalâ⬠at the same time to different degrees. The AND, OR, and NOT operators of boolean logic exist in fuzzy logic, usually defined as the minimum, maximum, and omplement; when they are defined this way, they are called the Zadeh operators. So for the fuzzy variables x and y: NOT x = (1 ââ¬â truth(x)) x AND y = minimum(truth(x), truth(y)) x OR y = maximum(truth(x), truth(y)) There are also other operators, more linguistic in nature, called hedges that can be applied. These are generally adverbs such as ââ¬Å"veryâ⬠, or ââ¬Å"somewhatâ⬠, which modify the meaning of a set using a mathematical formula. [edit]Logical analysis In mathematical logic, there are several formal systems of ââ¬Å"fuzzy logicâ⬠; most of them belong among so-called t-norm fuzzy logics. edit]Propositional fuzzy logics The most important propositional fuzzy logics are: Monoidal t-norm-based propositional fuzzy logic MTL is an axiomatization of logic where conjunction is defined by a left continuous t-norm, and implication is defined as the residuum of the t-norm. Its models correspond to MTL-algebras that are prelinear commutative bounded integral residuated lattices. Basic propositional fuzzy logic BL is an extension of MTL logic where conjunction is defined by a continuous t-norm, and implication is also defined as the residuum of the t-norm. Its models correspond to BL-algebras. Lukasiewicz fuzzy logic is the extension of basic fuzzy logic BL where standard conjunction is the Lukasiewicz t-norm. It has the axioms of basic fuzzy logic plus an axiom of double negation, and its models correspond to MV-algebras. Godel fuzzy logic is the extension of basic fuzzy logic BL where conjunction is Godel t-norm. It has the axioms of BL plus an axiom of idempotence of conjunction, and its models are called G-algebras. Product fuzzy logic is the extension of basic fuzzy logic BL where conjunction is product t-norm. It has the axioms of BL plus another axiom for cancellativity of conjunction, and its models are called product algebras. Fuzzy logic with evaluated syntax (sometimes also called Pavelkaââ¬â¢s logic), denoted by EVL, is a further generalization of mathematical fuzzy logic. While the above kinds of fuzzy logic have traditional syntax and many-valued semantics, in EVL is evaluated also syntax. This means that each formula has an evaluation. Axiomatization of EVL stems from Lukasziewicz fuzzy logic. A generalization of classical Godel completeness theorem is provable in EVL. edit]Predicate fuzzy logics These extend the above-mentioned fuzzy logics by adding universal and existential quantifiers in a manner similar to the way that predicate logic is created from propositional logic. The semantics of the universal (resp. existential) quantifier in t-norm fuzzy logics is the infimum (resp. supremum) of the truth degrees of the instances of the quantified subformula. [edit]Decidability i ssues for fuzzy logic The notions of a ââ¬Å"decidable subsetâ⬠and ââ¬Å"recursively enumerable subsetâ⬠are basic ones for classical mathematics and classical logic. Then, the question of a suitable extension of such concepts to fuzzy set theory arises. A first proposal in such a direction was made by E. S. Santos by the notions of fuzzy Turing machine, Markov normal fuzzy algorithm and fuzzy program (see Santos 1970). Successively, L. Biacino and G. Gerla showed that such a definition is not adequate and therefore proposed the following one. U denotes the set of rational numbers in [0,1]. A fuzzy subset s : S [0,1] of a set S is recursively enumerable if a recursive map h : S? N U exists such that, for every x in S, the function h(x,n) is increasing with respect to n and s(x) = lim h(x,n). We say that s is decidable if both s and its complement ââ¬âs are recursively enumerable. An extension of such a theory to the general case of the L-subsets is proposed in Gerla 2006. The proposed definitions are well related with fuzzy logic. Indeed, the following theorem holds true (provided that the deduction apparatus of the fuzzy logic satisfies some obvious effectiveness property). Theorem. Any axiomatizable fuzzy theory is recursively enumerable. In particular, the fuzzy set of logically true formulas is recursively enumerable in spite of the fact that the crisp set of valid formulas is not recursively enumerable, in general. Moreover, any axiomatizable and complete theory is decidable. It is an open question to give supports for a Church thesis for fuzzy logic claiming that the proposed notion of recursive enumerability for fuzzy subsets is the adequate one. To this aim, further investigations on the notions of fuzzy grammar and fuzzy Turing machine should be necessary (see for example Wiedermannââ¬â¢s paper). Another open uestion is to start from this notion to find an extension of Godelââ¬â¢s theorems to fuzzy logic. [edit]Fuzzy databases Once fuzzy relations are defined, it is possible to develop fuzzy relational databases. The first fuzzy relational database, FRDB, appeared in Maria Zemankovaââ¬â¢s dissertation. Later, some other models arose like the Buckles-Petry model, the Prade-Testemale Model, the Umano-Fuk ami model or the GEFRED model by J. M. Medina, M. A. Vila et al. In the context of fuzzy databases, some fuzzy querying languages have been defined, highlighting the SQLf by P. Bosc et al. and the FSQL by J. Galindo et al. These languages define some structures in order to include fuzzy aspects in the SQL statements, like fuzzy conditions, fuzzy comparators, fuzzy constants, fuzzy constraints, fuzzy thresholds, linguistic labels and so on. [edit]Comparison to probability Fuzzy logic and probability are different ways of expressing uncertainty. While both fuzzy logic and probability theory can be used to represent subjective belief, fuzzy set theory uses the concept of fuzzy set membership (i. e. , how much a variable is in a set), and probability theory uses the concept of subjective probability (i. . , how probable do I think that a variable is in a set). While this distinction is mostly philosophical, the fuzzy-logic-derived possibility measure is inherently different from the probability measure, hence they are not directly equivalent. However, many statisticians are persuaded by the work of Bruno de Finetti that only one kind of mathematical uncertainty is needed and thus fuzzy logic is unnecessary. On the other hand, Bart Kosko argues[citation needed] that probability is a subtheory of fuzzy logic, as probability only handles one kind of uncertainty. He also claims[citation needed] to have proven a derivation of Bayesââ¬â¢ theorem from the concept of fuzzy subsethood. Lotfi Zadeh argues that fuzzy logic is different in character from probability, and is not a replacement for it. He fuzzified probability to fuzzy probability and also generalized it to what is called possibility theory. (cf. [6]) [edit]See also Logic portal Thinking portal Artificial intelligence Artificial neural network Defuzzification Dynamic logic Expert system False dilemma Fuzzy architectural spatial analysis Fuzzy associative matrix Fuzzy classification Fuzzy concept Fuzzy Control Language Fuzzy Control System Fuzzy electronics Fuzzy mathematics Fuzzy set Fuzzy subalgebra FuzzyCLIPS expert system Machine learning Multi-valued logic Neuro-fuzzy Paradox of the heap Rough set Type-2 fuzzy sets and systems Vagueness Interval finite element Noise-based logic [edit]Notes ^ Novak, V. , Perfilieva, I. and Mockor, J. (1999) Mathematical principles of fuzzy logic Dodrecht: Kluwer Academic. ISBN 0-7923-8595-0 ^ ââ¬Å"Fuzzy Logicâ⬠. Stanford Encyclopedia of Philosophy. Stanford University. 2006-07-23. Retrieved 2008-09-29. ^ Zadeh, L. A. (1965). Fuzzy setsâ⬠, Information and Control 8 (3): 338ââ¬â353. ^ James A. Oââ¬â¢Brien; George M. Marakas (2011). Management Information Systesm (10th ed. ). New York: McGraw Hill. pp. 431. ^ Zadeh, L. A. et al. 1996 Fuzzy Sets, Fuzzy Logic, Fuzzy Systems, World Scientific Press, ISBN 9810224214 ^ Novak, V. Are fuzzy sets a reasonable tool for modeling vague phenomena? , Fuzzy Sets and System s 156 (2005) 341ââ¬â348. [edit]Bibliography Von Altrock, Constantin (1995). Fuzzy logic and NeuroFuzzy applications explained. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-368465-2. Arabacioglu, B. C. (2010). ââ¬Å"Using fuzzy inference system for architectural space analysisâ⬠. Applied Soft Computing 10 (3): 926ââ¬â937. Biacino, L. ; Gerla, G. (2002). ââ¬Å"Fuzzy logic, continuity and effectivenessâ⬠. Archive for Mathematical Logic 41 (7): 643ââ¬â667. doi:10. 1007/s001530100128. ISSN 0933-5846. Cox, Earl (1994). The fuzzy systems handbook: a practitionerââ¬â¢s guide to building, using, maintaining fuzzy systems. Boston: AP Professional. ISBN 0-12-194270-8. Gerla, Giangiacomo (2006). ââ¬Å"Effectiveness and Multivalued Logicsâ⬠. Journal of Symbolic Logic 71 (1): 137ââ¬â162. doi:10. 2178/jsl/1140641166. ISSN 0022-4812. Hajek, Petr (1998). Metamathematics of fuzzy logic. Dordrecht: Kluwer. ISBN 0792352386. Hajek, Petr (1995). ââ¬Å"Fuzzy logic and arithmetical hierarchyâ⬠. Fuzzy Sets and Systems 3 (8): 359ââ¬â363. doi:10. 1016/0165-0114(94)00299-M. ISSN 0165-0114. Halpern, Joseph Y. (2003). Reasoning about uncertainty. Cambridge, Mass: MIT Press. ISBN 0-262-08320-5. Hoppner, Frank; Klawonn, F. ; Kruse, R. ; Runkler, T. (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition. New York: John Wiley. ISBN 0-471-98864-2. Ibrahim, Ahmad M. (1997). Introduction to Applied Fuzzy Electronics. Englewood Cliffs, N. J: Prentice Hall. ISBN 0-13-206400-6. Klir, George J. ; Folger, Tina A. (1988). Fuzzy sets, uncertainty, and information. Englewood Cliffs, N. J: Prentice Hall. ISBN 0-13-345984-5. Klir, George J. ; St Clair, Ute H. ; Yuan, Bo (1997). Fuzzy set theory: foundations and applications. Englewood Cliffs, NJ: Prentice Hall. ISBN 0133410587. Klir, George J. ; Yuan, Bo (1995). Fuzzy sets and fuzzy logic: theory and applications. Upper Saddle River, NJ: Prentice Hall PTR. ISBN 0-13-101171-5. Kosko, Bart (1993). Fuzzy thinking: the new science of fuzzy logic. New York: Hyperion. ISBN 0-7868-8021-X. Kosko, Bart; Isaka, Satoru (July 1993). ââ¬Å"Fuzzy Logicâ⬠. Scientific American 269 (1): 76ââ¬â81. doi:10. 1038/scientificamerican0793-76. Montagna, F. (2001). ââ¬Å"Three complexity problems in quantified fuzzy logicâ⬠. Studia Logica 68 (1): 143ââ¬â152. doi:10. 1023/A:1011958407631. ISSN 0039-3215. Mundici, Daniele; Cignoli, Roberto; Dââ¬â¢Ottaviano, Itala M. L. (1999). Algebraic foundations of many-valued reasoning. Dodrecht: Kluwer Academic. ISBN 0-7923-6009-5. Novak, Vilem (1989). Fuzzy Sets and Their Applications. Bristol: Adam Hilger. ISBN 0-85274-583-4. Novak, Vilem (2005). ââ¬Å"On fuzzy type theoryâ⬠. Fuzzy Sets and Systems 149 (2): 235ââ¬â273. doi:10. 1016/j. fss. 2004. 03. 027. Novak, Vilem; Perfilieva, Irina; Mockor, Jiri (1999). Mathematical principles of fuzzy logic. Dordrecht: Kluwer Academic. ISBN 0-7923-8595-0. Onses, Richard (1996). Second Order Experton: A new Tool for Changing Paradigms in Country Risk Calculation. ISBN 8477195587. Onses, Richard (1994). Determination de l? incertitude inherente aux investissements en Amerique Latine sur la base de la theorie des sous ensembles flous. Barcelona. ISBN 8447508811. Passino, Kevin M. ; Yurkovich, Stephen (1998). Fuzzy control. Boston: Addison-Wesley. ISBN 020118074X. Pedrycz, Witold; Gomide, Fernando (2007). Fuzzy systems engineering: Toward Human-Centerd Computing. Hoboken: Wiley-Interscience. ISBN 978047178857-7. Pu, Pao Ming; Liu, Ying Ming (1980). ââ¬Å"Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore-Smith convergenceâ⬠. Journal of Mathematical Analysis and Applications 76 (2): 571ââ¬â599. doi:10. 1016/0022-247X(80)90048-7. ISSN 0022-247X Santos, Eugene S. (1970). ââ¬Å"Fuzzy Algorithmsâ⬠. Information and Control 17 (4): 326ââ¬â339. doi:10. 1016/S0019-9958(70)80032-8. Scarpellini, Bruno (1962). ââ¬Å"Die Nichaxiomatisierbarkeit des unendlichwertigen Pradikatenkalkuls von Lukasiewiczâ⬠. Journal of Symbolic Logic (Association for Symbolic Logic) 27 (2): 159ââ¬â170. doi:10. 2307/2964111. ISSN 0022-4812. JSTOR 2964111. Steeb, Willi-Hans (2008). The Nonlinear Workbook: Chaos, Fractals, Cellular Automata, Neural Networks, Genetic Algorithms, Gene Expression Programming, Support Vector Machine, Wavelets, Hidden Markov Models, Fuzzy Logic with C++, Java and SymbolicC++ Programs: 4edition. World Scientific. ISBN 981-281-852-9. Wiedermann, J. (2004). ââ¬Å"Characterizing the super-Turing computing power and efficiency of classical fuzzy Turing machinesâ⬠. Theor. Comput. Sci. 317 (1-3): 61ââ¬â69. doi:10. 1016/j. tcs. 2003. 12. 004. Yager, Ronald R. ; Filev, Dimitar P. (1994). Essentials of fuzzy modeling and control. New York: Wiley. ISBN 0-471-01761-2. Van Pelt, Miles (2008). Fuzzy Logic Applied to Daily Life. Seattle, WA: No No No No Press. ISBN 0-252-16341-9. Wilkinson, R. H. (1963). ââ¬Å"A method of generating functions of several variables using analog diode logicâ⬠. IEEE Transactions on Electronic Computers 12 (2): 112ââ¬â129. doi:10. 1109/PGEC. 1963. 263419. Zadeh, L. A. (1968). ââ¬Å"Fuzzy algorithmsâ⬠. Information and Control 12 (2): 94ââ¬â102. doi:10. 1016/S0019-9958(68)90211-8. ISSN 0019-9958. Zadeh, L. A. (1965). ââ¬Å"Fuzzy setsâ⬠. Information and Control 8 (3): 338ââ¬â353. doi:10. 1016/S0019-9958(65)90241-X. ISSN 0019-9958. Zemankova-Leech, M. (1983). Fuzzy Relational Data Bases. Ph. D. Dissertation. Florida State University. Zimmermann, H. (2001). Fuzzy set theory and its applications. Boston: Kluwer Academic Publishers. ISBN 0-7923-7435-5. [edit]External links How to cite Fuzzy Logic, Papers
Subscribe to:
Comments (Atom)